Western Reserve Plan – Current Plan for Cuyahoga County Government

The link is here

Plan Highlights:

The Western Reserve Plan will focus on these 12 key areas:

  1. Metropolitan Government:
    Implementing a practical strategy for creating a functioning, county-wide metropolitan government.
  2. Entrepreneurship and Job Growth:
    Establishing Greater Cleveland as a center of entrepreneurship and job growth.
  3. Downtown Cleveland:
    Designing a place-based development strategy which recognizes the centrality of downtown Cleveland to the region as a whole.
  4. Human Service Needs:
    Aligning and coordinating both public and private resources around our most pressing human service needs.
  5. Education:
    Identifying education, from early childhood forward, as the central factor in individual and community success.
  6. Health and Wellness:
    Embracing a health and wellness culture which mirrors the excellence of our major medical institutions.
  7. Economic Inclusion:
    Incorporating economic inclusion as a guiding principle in our economic development strategy.
  8. International City/Younger Generations:
    Branding our metropolitan area as an international city which harnesses the energy of our younger generations.
  9. Foreclosure Crisis:
    Adopting a collaborative approach to the foreclosure crisis- from prevention to restoration.
  10. Veterans:
    Honoring the service of our veterans by giving them priority in hiring, training and education.
  11. Public Safety:
    Protecting our county by leading a county-wide public safety initiative.
  12. Good Government:
    Creating a culture within county government which implements nationally recognized good government practices and innovations.

Ohio Flood of 1913

From the Chillicothe Gazette, March 15, 2013

The link is here:

http://www.chillicothegazette.com/article/20130316/NEWS01/303160001/Public-largely-has-forgotten-Ohio-s-Flood-1913

Public largely has forgotten Ohio’s Flood of 1913

Written by Russ Zimmer CentralOhio.com

By any measurement, the Flood of 1913 was the most significant catastrophe in Ohio’s history. One that left an indelible mark on transportation infrastructure, humanitarian missions and, of course, flood planning.

bilde.jpeg

This image was taken during the Flood of 1913 on Seventh Street in Chillicothe.

Forty-two percent of Dayton was underwater. The water was 17 feet deep in parts of Columbus. Five hundred bridges were washed away. Ohio was changed forever.

However, outside of Dayton, there isn’t much talk about the week of March 23, 1913, when at least 600 people died, 250,000 people were left homeless, and hundreds of millions of dollars in damage (billions in today’s dollars) was wrought, according to the Silver Jackets, a collective of local, state and federal agencies involved in flood planning and response.

“This event was so historic, but it really has slipped through the public consciousness,” said Sarah Jamison, National Weather Service hydrologist. “If you think about the scale of this event, it was a (Hurricane) Katrina or a (Hurricane) Sandy.”

Eight to 12 inches of rain fell across the state starting on March 23, Easter Sunday, and ending midday March 27. Data from the NWS says a typical March in Ohio has 2.5 to 4 inches of precipitation. Ohio seemed star-crossed as pretty much everything that could have gone wrong did, starting March 21, Good Friday, when a strong windstorm swept through with hurricane-force winds in the north and sustained winds up to 40 mph elsewhere in the state.

“That knocked out power lines and telephone lines,” said Jamison, who works at the Cleveland NWS station. “There was no way of relaying information once the flooding started (Sunday).”

Before it was all over, not a single river in Ohio remained contained within its banks and no corner of the state was immune from the effects of the flood.

“In the case of 1913, it was pretty much the entire state of Ohio,” said Julie Reed, a hydrologist at the Wilmington NWS office. “It remains to date the single most deadly and devastating disaster in Ohio history.”

In the old parlance, Jamison said the series of storms that caused the 1913 flood would have been called a 500-year or 1,000-year event. Spearheaded by Daytonians, plans quickly took off to make sure Ohio would be as ready as it could be for the next one.

Within a year of the flood waters receding, Dayton had developed a plan to build large reservoirs that would capture excessive rainwater, but officials found they didn’t have the legal authority to construct flood-control structures. The Ohio Conservancy Act was approved in February 1914 and the Miami Conservancy District was born a year later. (One in Kenton with a much smaller footprint was established first.)

Today, there are 20 conservancy districts in Ohio, including the massive Muskingum Watershed Conservancy District, which encompasses about 20 percent of the state. Its dams and reservoirs have been tested many times since its first dam was built in 1935, but perhaps not more so than during flooding in January 2005, when 8 inches of rain fell in a 10-day period

The pools at seven of the 16 dams in the district set record highs, according to district spokesman Darrin Lautenschleger, and there was some flooding in the easement areas behind the dams.

“However, the system operated exactly as it was designed, as there were no significant reports of property damage and, most importantly, there was no loss of life reported from this event,” he said.

The U.S. Army Corps of Engineers estimates property owners were spared $400 million in damage from that flood and a total of $10.4 billion through the history of the Muskingum Watershed Conservancy District.

Flood planning today, however, is geared more toward “keeping people away from the floods instead of floods away from people,” said Alicia Silverio, a senior environmental specialist at the Ohio Department of Natural Resources. Silverio provides guidance on floodplain management to local governments.

“We have so many communities where their downtowns have rivers running through them,” Silverio said. “They knew areas like that were flood prone. They were low-lying and next to channels, but it was a risk they had to take, to be close to those waterways.”

Ideally, land inside what the federal government has identified as the 1 percent floodplain — areas that have a 1 in 100 annual chance of flooding — would be used for open space, picnic areas and ball fields.

The reality is much different for many cities, which were designed around water access for commercial uses, so it becomes about mitigating the damage to new structures. As development increases, so does the flood risk, Silverio said, because more parking lots, roofs and other impervious surfaces means less ground to soak up rainfall.

“Flooding is going to happen,” Silverio said. “It’s when we have people and development in the way of that flood that it becomes a problem.”

The scope of the post-flood transformation was not limited to just flood control, or even to just Ohio and Indiana, the two most deluged states. That makes its relatively small place in history all the more puzzling, said Trudy Bell, a veteran science journalist and author of several stories on the flood.

Bell is crisscrossing the region and giving talks about the catastrophe, but she said the attention the event is getting now wasn’t there in 2012 and probably won’t be there in 2014. Leave the Miami Valley and talking about 1913 flood might bring a lot of blank stares, despite its many legacies, she said.

For example, the American Red Cross, which was chartered by Congress in the preceding decade, cut its teeth in the flood, she said.

“The experience they gained through handling that broad of an area prepared them for handling all the casualties on the battlefield of World War I,” Bell said.

The United Way sprung from the model of federated giving — donating to an umbrella charity organization — that was pioneered by “community chests,” the first of which was established in Cleveland in 1913 as a response to the flood.

Bell said that what now are known as Rotary International clubs transformed from primarily business groups to community service clubs when they reacted to the flood with their first cooperative humanitarian response.

Radio, a relatively new technology at the time, became an integral tool in future disaster responses, as amateur operators at Ohio State University helped relay information to family members searching for their relatives, she said.

Bridges subsequently were built with their piers farther up the banks of the river or creek and with higher spans. Many bridges acted as dams in 1913 when debris became trapped against their pillars and decks, causing water to back up and then spill out in unintended places, Bell said.

Before the flood, there was an extensive system of canals in Ohio, she said. Goods on their way from New York City to the Gulf of Mexico would travel via canal from Lake Erie to the Ohio River at Portsmouth. Parts of the canals, whose owners were already feeling the pinch of competition from railroads, were intentionally destroyed during the flood and the system was completely abandoned for commercial purposes.

“Seldom can you say a canal era ended at one particular moment, but in this case I’m pretty sure if was either (that) Tuesday or Wednesday,” she said.

Experts: Weather conditions that created 1913 flood are rare

Climate change takes weather to the extremes, but it’s unclear if rising temperatures raise the odds of a repeat of the 1913 flood, Ohio’s state climatologist said.

Global warming is responsible for periods of prolonged drought, but also the increase in intense bursts of rain, he said. In recent years, we’ve seen both of those in Ohio.

“What the scientific evidence seems to be showing is that with global warming, we are getting more frequent high-rainfall events in Ohio,” said Jeff Rogers, a geography professor at Ohio State University and the state’s climatologist. “In Ohio and other parts of the Midwest, we’ve seen an increase in days with 1 inch or more of rainfall.”

However, that type of weather leads to flash floods and doesn’t describe what happened March 23 through March 27, 1913.

The Flood of 1913 wasn’t caused by one massive storm, such as a hurricane, but by a series of low-pressure systems from the Rocky Mountains that were stalled over Ohio and Indiana by an unusually immobile high-pressure system sitting on the East Coast, according to hydrologists with the National Weather Service in Ohio.

“We don’t know very much about what the role of global warming actually is in causing weather systems to stall,” Rogers said.

On Easter Sunday 1913, temperatures climbed from near freezing up to above 70 degrees. Winds from the south pushed warm, humid air from the Gulf of Mexico into the mix, providing an ample source of moisture to feed the storm. The entire state was soaked, not just one basin, which meant there was no relief to be found anywhere.

Sarah Jamison, a hydrologist at Cleveland office of the NWS, said the meteorological circumstances that caused the flood are rare.

“The rarity of those storms from a rainfall perspective — 6 to 10 inches on average and in some areas as much as a foot — we can get rainfall events like that on a local basis,” she said. “That it was so widespread is what makes this storm unique.”

About the only thing not working against Ohio that week was that the ground wasn’t snow covered or frozen, said Julie Reed, a hydrologist at the Wilmington office of the NWS.

Rogers, who has been the state’s climatologist since 1986, said the pattern of quick and intense storms tied to global warming already has revealed shortcomings in the storm water infrastructure.

“The shorter-term events are pointing toward improved needs for updating sewer systems and storm drainage and when the big events — the real nasty ones — come, it will help us be better prepared for those, too,” he said, “but sometimes you’re just never really ready for it.” 

Cigarette tax for arts and culture has generated $65 million at halfway point (Plain Dealer 11/5/11)

“Cigarette tax for arts and culture has generated $65 million at halfway point” (Plain Dealer  11/5/11)

The link is here

Cigarette tax for arts and culture has generated $65 million at halfway point


By Donald Rosenberg, The Plain Dealer 
on May 27, 2011 at 8:32 AM, updated May 27, 2011 at 12:10 PM

Since 2006, when Cuyahoga County approved a 10-year cigarette tax to support local arts and culture, more than $65 million has been awarded to 150 arts organizations across the region.

That’s the figure released Thursday by Cuyahoga Arts and Culture, the public entity that administers the tax dollars, at the halfway point in the initiative.

“We have long been saying that the arts and culture aren’t just extras,” said Karen Gahl-Mills, the organization’s executive director, in a statement.

“It’s extremely gratifying to have the data now to back up that statement. We’re not just paying for things that are nice to have; we’re investing in the infrastructure of this county and helping to make it the world-class region that we all know it can be.”

Arts groups funded by Cuyahoga Arts and Culture generated more than $280 million in economic activity in 2009, the organization reports, and they employed more than 5,000 staff and contractors.

Since the cigarette-tax funding became available, many of these groups have expanded offerings of cultural activities by 25 percent to almost 24,000 events and classes each year.

Visitors to the Cleveland Metroparks Zoo will no longer be able to smoke there if a planned smoking ban takes effect in January

Cuyahoga Arts and Culture reports that attendance at free and paid events is up by seven percent, to more than 7.7 million annual visits.

Arts and education programming for children is up as the result of the cigarette tax, with more than 1 million students attending arts and culture events each year . And after-school and weekend classes and workshops have increased by 103 percent, with tuition for paid classes dropping by 8 percent.

To read Cuyahoga Arts and Culture’s 2010 Report to the Community, go to bluetoad.com/publication/?i=70051.

“Making Sense of Place” Video from the Lincoln Institute of Land Policy

The link is here

2006 video about Cleveland and Northeast Ohio that is at time depressing and at other times quite optimistic. At all times it asks us to consider the issues of land sprawl and its consequences.

From the video:

Making Sense of Place – Cleveland: Confronting Decline in an American City is a one-hour documentary film about deterioration in the urban core and older suburbs in what was once Americaˈs 5th-largest city, concurrent with growth at the suburban periphery. Through the eyes and voices of Cleveland residents, the film explores the interrelationships of individual choices, the democratic process and market forces in the region. Many factors contribute to the patterns of the last several decades, including issues of race and class, taxes and schools, and major shifts in population and jobs.

Produced by the Lincoln Institute of Land Policy and the Lincoln Foundation

Science in Cleveland from the Encyclopedia of Cleveland History

Written by Edward J. Pershey

The link is here

SCIENCE – The Encyclopedia of Cleveland History

SCIENCE. In America during the 1800s science grew from the level of dilettantes to large-scale research performed by university-trained professionals. Financial support for science matured as well, outgrowing the individual’s pocketbook to tap the coffers of government, corporations, and public and private institutions. In the 20th century, science and TECHNOLOGY AND INDUSTRIAL RESEARCH produced a powerful combination of knowledge about the world and the ways to manipulate it for personal and public benefit. This knowledge permeated the culture and changed the way that human society thought about itself and about its relationship to the surrounding natural environment. The power of science and technology to affect society resulted in a continued and growing public interest in scientific topics. The pattern of scientific work in Cleveland in the early days of its history was largely that of amateur naturalists, actually a group of young men from the city’s well-to-do leadership, headed by WILLIAM CASE. During the 1830s, William and several friends gathered a collection of birds, fish, and botanical and geological samples, including specimens of flora and fauna from around the Cleveland area. These natural curiosities were kept in a small house named the “ARK” because of its assorted contents, which was located on PUBLIC SQUARE next to the Case residence. The “Arkites” met on a regular basis to present formal and informal papers on various scientific topics. As the members of the group grew older, however, the meetings grew less frequent and eventually stopped.

With the 1832 opening of the Ohio Canal, Cleveland became a commercial “boom town” that offered great opportunities to professionals in all fields. One of these was , a doctor trained at Yale, who had moved to Ohio at the age of 30 in 1823 to practice medicine. By 1843 he was on the faculty of the medical school of Western Reserve College located in Cleveland and took an active ry, tin stimulating the development of intellectual interests in the city. In 1845 Kirtland led a group of professional men, many of whom taught science and medicine at local colleges and medical schools, in forming the CLEVELAND ACADEMY OF NATURAL SCIENCES, which was first housed in the medical school of Western Reserve College. Kirtland’s national reputation brought the annual meeting of the American Assn. for the Advancement of Science to the city in the summer of 1853, where the issues regarding the role of amateurs in professional scientific work were first raised. While many members of the Academy were amateur naturalists, not many papers read at the meeting were in the field of natural history, reflecting the evolution of American science toward the physical sciences. Also, several of the papers presented by local amateurs were not well received by the visiting professionals and eventually were deleted from, the published proceedings. A version of the proceedings of this meeting of the AAAS was published in Cleveland in Annals of Science, a short-lived (185354) journal edited by Hamilton Smith, a Yale graduate, astronomer, and Cleveland resident.

While the Cleveland Academy of Natural Sciences (renamed the Kirtland Society for its founder) focused on natural history and involved various medical school teachers in Cleveland, Elias Loomis, professor of natural philosophy at Western Reserve College in Hudson established the first permanent observatory west of the Allegheny Mountains in the late 1830s, which still exists on the grounds of the old college campus in Hudson. After the Civil War, scientific activity in Cleveland increasingly became concerned with the physical sciences of astronomy and physics. The two founders of WARNER & SWASEY CO., a new machine-tool company which moved to Cleveland from Chicago in 1881, were deeply interested in astronomical telescopes, and during the 1880s and 1890s built the largest such telescopes in the world. Cleveland became the source for the world’s finest astronomical instruments, such as those provided for the Lick Observatory of the Univ. of California, the U.S. Naval Observatory, and the Yerkes Observatory of the Univ. of Chicago, among others.

Cleveland’s first scientific and technical college, the Case School of Applied Science, opened in 1880 on Public Square. College-level technical schools such as Case were started throughout the U.S. in the years after the Civil War. The U.S. was quickly becoming a world leader in technology and MICHELSON-MORLEY EXPERIMENT, a national historic chemical landmark, only the 4th location to be so designated in the country.) Another prominent physical scientist at Case was DAYTON C. MILLER. Miller conducted many experiments in acoustics, establishing that tradition in experimental and theoretical work in the Case physics department. In 1896 he was one of the first Americans to follow up on the x-ray work of Wilhelm Roentgen in Germany. Miller took some of the first x-ray pictures in America at Case and published early accounts of his experiments.

While the faculty at Case continued to research the physical world, science in the early 20th century was finding a new home in municipal government. Cleveland’s sanitation, water, and public health departments were involved in numerous studies of the environmental changes brought on by urban growth. In the first years of the new century, Mayor TOM L. JOHNSON led an administration that aggressively sought solutions to the problems of a tainted water supply, typhoid fever outbreaks, and smoke pollution. The city’s water department, which built the first pumping station and reservoir in the 1850s, had grown into a large, technological system, supplying water to Cleveland and theSUBURBS. After studies and tests done by city workers in conjunction with, physicians showed the connection between water pollution and typhoid fever, chlorination of the water was begun in 1911 and the typhoid threat was eliminated (See WATER SYSTEM). One of the earliest scientific studies of the polluted air of a major industrial city was done by CHARLES F. MABERY, a chemist working at the Case School in 1895. Cleveland, plagued with coal-smoke pollution, joined the “smoke abatement” movement of the early 20th century by hiring smoke inspectors, who became experts on its physical and chemical properties in their attempt to combat the dirty skies of the city. The natural sciences received public attention in 1920 when the CLEVELAND MUSEUM OF NATURAL HISTORY was founded. The museum thrived and continues to serve the Greater Cleveland area with a program of exhibits and school-group and public programming.

In the 1920s, an extensive research program in human anatomy, eugenics, and children’s-health statistics was conducted by Cleveland physicians CARL HAMANNROGER PERKINS, and THOMAS WINGATE TODD. Perkins headed the city’s Division of Health and assisted Hamann, who brought Todd to the city from England, in planning and executing a long-term investigation into public health through the study of anatomy, using cadavers obtained legally from the city’s workhouse and morgue. In the late 1920s, Todd was selected to head theBRUSH FOUNDATION, created by CHARLES FRANCIS BRUSH, electrical-industry pioneer in Cleveland and member of Cleveland’s wealthy business community. Brush had lost his only son and his son’s daughter to blood poisoning. In his sorrow, the elder Brush created the Brush Foundation to promote research to improve the overall genetic stock of the human race. This research program involved the systematic compilation and study of vast amounts of medical data on a select group of 1,000 school-age children in the Cleveland area. The data collected on these children included regular full-length x-rays of the whole body, and precise x-rays of facial and dental structure as they aged. Between 192942, over 22,000 physical exams and over 90,000 psychological exams were conducted, and more then 250,000 x-rays were made. Although the study concentrated on 1,000 of the children, the total number of subjects by the end of the project was more than 5,000. After Todd died in 1938, the study was continued on a much-reduced scale until World War II shortages brought it to a close. After the war, other researchers questioned the radiation damage to the subjects from such extensive and regular exposure to x-rays, but recent studies do not show any increase in cancer rates or other diseases among this group. The records from this study remain intact atCASE WESTERN RESERVE UNIVERSITY

The Case School of Applied Science, renamed Case Institute of, Technology, continued to be the focus of scientific work in the city, especially in the 1950s and early 1960s. Under the direction of Case astronomer JASON J. NASSAU, working at the Warner & Swasey Observatory, it developed techniques for obtaining spectrographic information on large numbers of stars at one time and for identifying a type of star called a “Red Giant” because of its size and spectral color.

In the 1960s, important work in particle physics was done at Case Tech by Frederick Reines, who had worked at Los Alamos on the Manhattan Project to develop the first nuclear bomb during World War II. Reines developed an extensive program of research in atomic particles, developing underground observation chambers in Cleveland’s salt mines under Lake Erie to shield experiments from cosmic rays emanating from outer space. Reines and his team also studied cosmic rays themselves from high-altitude balloons in Texas. Working with a team of researchers deep in a gold mine in South Africa, Reines and Thomas Jenkins (also of Case) were the first to detect the presence of the elementary subatomic particle, the neutrino, from a source in nature in 1965. Theoretically, the neutrino, found until that time only in manmade nuclear experiments, should be observable as part of the natural radiation streaming down onto the earth from outer space. Engineering science at Case also focused on materials research, polymer science, electronics, and systems analysis in the 1960s. With the formation of Case Western Reserve Univ. in 1967, Case’s science and engineering departments became linked to the biochemical and medical researches at Western Reserve Univ., creating a large biomedical engineering research institution. Government-operated research also has been conducted in Cleveland since World War II at the NASA JOHN H. GLENN RESEARCH CENTER AT LEWIS FIELD, which remains a national center for research into propulsion systems for space exploration.

Anthropological research received worldwide acclaim in the 1970s with the work of Donald C. Johanson at the Cleveland Museum of Natural History, who discovered the remarkably complete skeletal remains of a fema, tin Africa, which he dated back more than 3.5 million years. This early human, named “LUCY” by Johanson and his team of researchers, represented a major find in anthropology, pushing the beginnings of mankind back farther than formerly imagined. The announcement of Lucy’s discovery generated a great amount of public interest in Johanson’s work, demonstrating the growing public intrigue with the latest scientific findings as society becomes increasingly more dependent on research in science and engineering.


Edward J. Pershey

Western Reserve Historical Society

Last Modified: 22 Jul 1997 01:28:11 PM

Teaching Cleveland Digital